
9/22/2016 https://ay16.moodle.umn.edu/pluginfile.php/1138798/mod_resource/content/2/lab2.html

https://ay16.moodle.umn.edu/pluginfile.php/1138798/mod_resource/content/2/lab2.html 1/2

Computer Laboratory 2
CSci 1913: Introduction to Algorithms,

Data Structures, and Program Development
September 20–21, 2016

0. Introduction.

In this laboratory assignment, you will write a Python class called Zillion. The class Zillion implements a
decimal counter that allows numbers with an effectively infinite number of digits. Of course the number of digits
isn’t really infinite, since it is bounded by the amount of memory in your computer, but it can be very large.

1. Examples.

Here are some examples of how your class Zillion must work. I’ll first create an instance of Zillion. The
string gives the initial value of the counter. Blanks and commas in the string are ignored.

z = Zillion('999 999 999 998')

This instance of Zillion contains the number nine hundred ninety nine billion, nine hundred ninety nine
million, nine hundred and ninety nine thousand, nine hundred and ninety eight. This is much larger than the
maximum number that can be represented in a C++ or Java int variable, which is only 2 147 483 647, or around
two billion.
 I’ll add 1 to the counter, by calling the method increment, and I’ll print the counter by calling the method
toString. I should see 999999999999 (twelve nines) printed.

z.increment()
print(z.toString())

I’ll add 1 to the counter again, and print its digits as before. I should see 1000000000000 (one with twelve
zeroes) printed.

z.increment()
print(z.toString())

Finally, I’ll test if the counter contains zero by calling the method isZero. Of course z.isZero() will return
False. But Zillion('0').isZero() will return True.

2. Theory.

Your class Zillion must represent a number internally as a list of one or more digits. Each digit d in the list is an
integer 0 ≤ d ≤ 9. For example, the number 1234 must be represented as the list [1, 2, 3, 4]. Although Python
provides long integers that can have arbitrarily many digits, the class Zillion must not use long integers. You
will receive zero points for this assignment if you use Python’s long integers in any way!
 The method increment must work like this. Starting at the right end of the list, and moving toward the left
end, it must change 9’s into 0’s, until it finds a digit that is not 9, or until there are no more digits left to be
visited. If it stops because it has found a digit that is not 9, then it must add 1 to that digit. If it stops because
there are no more digits left, then it must add 1 to the front of the list. For example, if the list is [1, 2, 9], then
increment will first change the 9 at the end of the list to a 0, then add 1 to the digit 2, resulting in [1, 3, 0].
Similarly, if the list is [9, 9], then increment will change both 9’s to 0’s, then add 1 to the front of the list,
resulting in [1, 0, 0].
 Hint: unlike the previous lab, you are using lists instead of tuples. Lists are mutable objects, so you can
change their elements. In fact, you must change list elements, or your program will not work correctly.

3. Implementation.

9/22/2016 https://ay16.moodle.umn.edu/pluginfile.php/1138798/mod_resource/content/2/lab2.html

https://ay16.moodle.umn.edu/pluginfile.php/1138798/mod_resource/content/2/lab2.html 2/2

The class Zillion must define the following methods. To simplify grading, your methods must use the same

names as the ones shown here. However, they need not use the same parameter names, except for self, which

must be unchanged. To demonstrate your understanding of Python, some methods must be implemented in

specific ways, as described below.

__init__(self, digits)

(10 points.) The string digits must be a string containing nothing but digits (0 through 9), blanks, and

commas. It must contain at least one digit. If digits contains no digits, or if it contains a character that is

not a digit, a blank, or a comma, then raise a RuntimeError exception. Convert digits to a list of integer

digits as described in section 2, and save it within the instance of Zillion. The list represents the number

that is stored in the counter.

 Hints: it is not enough to test if digits is the empty string. For example, a string containing only

blanks and commas, like ' , ,,' must raise an exception. Also, you may wish to call the built-in function

int, which converts a string to an integer. For example, int('0') returns the integer 0.

 You do not need to catch the exception with a try statement. Python will do that for you automatically.

increment(self)

(10 points.) Increment the counter, using the algorithm described in part 2. Hint: one way to do this is by

using a while loop, and another way is to use recursion. There may also be other ways.

isZero(self)

(5 points.) Test if the counter contains zero. That is, test if your list of digits contains nothing but 0’s.

toString(self)

(5 points.) Convert the list of digits to a string, and return the string. Hint: you may wish to call the built-in

function str, which converts an integer to a string. For example, str(0) returns the string '0'.

4. Deliverables.

Submit your Python code for Zillion, containing definitions for __init__, increment, isZero, and toString.

If you defined any other methods, then submit the code for them as well. Also submit the results of tests

demonstrating that Zillion works correctly; write these tests yourself. Please submit only one file: your tests,

and the output they produce, must appear in comments at the bottom of that file.

 You need not write a user interface that accepts input or displays output. Instead, you might test Zillion
interactively (using the -i option on the Python control statement), or by calling its methods from print
functions or statements. This assignment is due at midnight on Tuesday–Wednesday September 27–28, 2016. If

you do not know how to submit it, then please ask your lab TA.

